Perturbation bounds for matrix square roots and Pythagorean sums
نویسندگان
چکیده
منابع مشابه
Replacing Square Roots by Pythagorean Sums
An algorithm is presented for computing a “Pythagorean sum” a 0 b = d m directly from a and b without computing their squares or taking a square root. No destructive floating point overflows or underflows are possible. The algorithm can be extended to compute the Euclidean norm of a vector. The resulting subroutine is short, portable, robust, and accurate, but not as eficient as some other poss...
متن کاملPerturbation Bounds for Hyperbolic Matrix Factorizations
Several matrix factorizations depend on orthogonal factors, matrices that preserve the Euclidean scalar product. Some of these factorizations can be extended and generalized to (J, J̃)-orthogonal factors, that is, matrices that satisfy H JH = J̃ , where J and J̃ are diagonal with diagonal elements ±1. The purpose of this work is to analyze the perturbation of matrix factorizations that have a (J, ...
متن کاملThree Absolute Perturbation Bounds for Matrix Eigenvalues Imply Relative Bounds
We show that three well-known perturbation bounds for matrix eigenvalues imply relative bounds: the Bauer-Fike and Hooman-Wielandt theorems for diagonalisable matrices, and Weyl's theorem for Hermitian matrices. As a consequence, relative perturbation bounds are not necessarily stronger than absolute bounds; and the conditioning of an eigenvalue in the relative sense is the same as in the absol...
متن کاملOn Comparing Sums of Square Roots of Small Integers
Let k and n be positive integers, n > k. Define r(n, k) to be the minimum positive value of | √ a1 + · · ·+ √ ak − √ b1 − · · · − √ bk| where a1, a2, · · · , ak, b1, b2, · · · , bk are positive integers no larger than n. It is an important problem in computational geometry to determine a good upper bound of − log r(n, k). In this paper we prove an upper bound of 2O(n/ logn), which is better tha...
متن کاملFinding the Smallest Gap between Sums of Square Roots
Let k and n be positive integers, n > k. Define r(n, k) to be the minimum positive value of | √ a1 + · · ·+ √ ak − √ b1 − · · · − p bk| where a1, a2, · · · , ak, b1, b2, · · · , bk are positive integers no larger than n. It is important to find a tight bound for r(n, k), in connection to the sum-of-square-roots problem, a famous open problem in computational geometry. The current best lower bou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 1992
ISSN: 0024-3795
DOI: 10.1016/0024-3795(92)90070-q