Perturbation bounds for matrix square roots and Pythagorean sums

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Replacing Square Roots by Pythagorean Sums

An algorithm is presented for computing a “Pythagorean sum” a 0 b = d m directly from a and b without computing their squares or taking a square root. No destructive floating point overflows or underflows are possible. The algorithm can be extended to compute the Euclidean norm of a vector. The resulting subroutine is short, portable, robust, and accurate, but not as eficient as some other poss...

متن کامل

Perturbation Bounds for Hyperbolic Matrix Factorizations

Several matrix factorizations depend on orthogonal factors, matrices that preserve the Euclidean scalar product. Some of these factorizations can be extended and generalized to (J, J̃)-orthogonal factors, that is, matrices that satisfy H JH = J̃ , where J and J̃ are diagonal with diagonal elements ±1. The purpose of this work is to analyze the perturbation of matrix factorizations that have a (J, ...

متن کامل

Three Absolute Perturbation Bounds for Matrix Eigenvalues Imply Relative Bounds

We show that three well-known perturbation bounds for matrix eigenvalues imply relative bounds: the Bauer-Fike and Hooman-Wielandt theorems for diagonalisable matrices, and Weyl's theorem for Hermitian matrices. As a consequence, relative perturbation bounds are not necessarily stronger than absolute bounds; and the conditioning of an eigenvalue in the relative sense is the same as in the absol...

متن کامل

On Comparing Sums of Square Roots of Small Integers

Let k and n be positive integers, n > k. Define r(n, k) to be the minimum positive value of | √ a1 + · · ·+ √ ak − √ b1 − · · · − √ bk| where a1, a2, · · · , ak, b1, b2, · · · , bk are positive integers no larger than n. It is an important problem in computational geometry to determine a good upper bound of − log r(n, k). In this paper we prove an upper bound of 2O(n/ logn), which is better tha...

متن کامل

Finding the Smallest Gap between Sums of Square Roots

Let k and n be positive integers, n > k. Define r(n, k) to be the minimum positive value of | √ a1 + · · ·+ √ ak − √ b1 − · · · − p bk| where a1, a2, · · · , ak, b1, b2, · · · , bk are positive integers no larger than n. It is important to find a tight bound for r(n, k), in connection to the sum-of-square-roots problem, a famous open problem in computational geometry. The current best lower bou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 1992

ISSN: 0024-3795

DOI: 10.1016/0024-3795(92)90070-q